Coalescent processes derived from some compound Poisson population models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of Symmetric Compound Poisson Population Models

Compound Poisson population models are particular conditional branching process models. A formula for the transition probabilities of the backward process for general compound Poisson models is verified. Symmetric compound Poisson models are defined in terms of a parameter θ ∈ (0,∞) and a power series φ with positive radius r of convergence. It is shown that the asymptotic behavior of symmetric...

متن کامل

Poisson processes , ordinary and compound

The Poisson process is a stochastic counting process that arises naturally in a large variety of daily-life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the compound Poisson process.

متن کامل

A Classification of Coalescent Processes for Haploid Exchangeable Population Models

We consider a class of haploid population models with nonoverlapping generations and fixed population size N assuming that the family sizes within a generation are exchangeable random variables. A weak convergence criterion is established for a properly scaled ancestral process as N → ∞. It results in a full classification of the coalescent generators in the case of exchangeable reproduction. I...

متن کامل

cplm : Compound Poisson Linear Models

The Tweedie compound Poisson distribution is a mixture of a degenerate distribution at the origin and a continuous distribution on the positive real line. It has been applied in a wide range of fields in which continuous data with exact zeros regularly arise. Nevertheless, statistical inference based on full likelihood and Bayesian methods is not available in most statistical software, largely ...

متن کامل

Alternative Forms of Compound Fractional Poisson Processes

and Applied Analysis 3 where the first term refers to the probability mass concentrated in the origin, δ y denotes the Dirac delta function, and fYβ denotes the density of the absolutely continuous component. The function gYβ given in 1.5 satisfies the following fractional master equation, that is, ∂ ∂tβ gYβ ( y, t ) −λgYβ ( y, t ) λ ∫ ∞ −∞ gYβ ( y − x, t ) fX x dx, 1.6 where ∂/∂t is the Caputo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2011

ISSN: 1083-589X

DOI: 10.1214/ecp.v16-1654